| Name                                           | Date                                | Block                       |  |  |  |
|------------------------------------------------|-------------------------------------|-----------------------------|--|--|--|
| Point of Concurrency Worksheet                 |                                     |                             |  |  |  |
| Give the name the poin                         | nt of concurrency for each of th    | ne following.               |  |  |  |
| 1. Angle Bisectors of a                        | Triangle Incenter                   |                             |  |  |  |
| 2. Medians of a Triang                         | le <u>Centroid</u>                  |                             |  |  |  |
| 3. Altitudes of a Triang                       | gle Orthocenter                     |                             |  |  |  |
| 4. Perpendicular Bisec                         | / 1.                                | mcenter                     |  |  |  |
| Complete each of the                           |                                     |                             |  |  |  |
| triangle.                                      | iangle is equidistant from the      |                             |  |  |  |
| 6. The <i>circumcenter</i> of the triangle.    | of a triangle is equidistant from t | he VINTICES of              |  |  |  |
| 7. The <i>centroid</i> is of the opposite side | of the distance from e.             | each vertex to the midpoint |  |  |  |
| 8. To inscribe a circle                        | e about a triangle, you use the     | incenter                    |  |  |  |
| 9. To circumscribe a                           | circle about a triangle, you use t  | he <u>Curcumcenter</u>      |  |  |  |
|                                                | lowing chart. Write if the poi      |                             |  |  |  |

|       | 5 ( |
|-------|-----|
| alway | ٥   |

|   |              | Acute A | Obtuse $\Delta$ | Right ∆ |
|---|--------------|---------|-----------------|---------|
|   | Circumcenter | inside  | outside         | 000     |
| 5 | Incenter     |         | inside          | enside  |
| 1 | Centroid     |         | inside          | inside  |
|   | Orthocenter  | V       | outside         | 200     |

In the diagram, the perpendicular bisectors (shown with dashed segments) of  $\triangle ABC$  meet at point G--the circumcenter. and are shown dashed. Find the indicated measure. B

11. 
$$AG = 25$$
 12.  $BD = 20$ 

12. 
$$BD = 20$$

13. 
$$CF = 24$$

13. 
$$CF = 24$$
 14.  $AB = 40$ 

15. 
$$CE = 15$$



17. 
$$m \angle ADG = \frac{QQ^{\circ}}{QQ^{\circ}}$$

18. IF BG = 
$$(2x - 15)$$
, find x.  $2x - 15 = 25$  [BG = 25]

$$2x - 15 = 25$$

$$2x = 40$$

$$x = 20$$

In the diagram, the perpendicular bisectors (shown with dashed segments) of  $\triangle MNP$  meet at point O—the circumcenter. Find the

indicated measure.

19. 
$$MO = 26.8$$

20. 
$$PR = 26$$

21. 
$$MN = 40$$

22. 
$$SP =$$
  $\mathcal{L}\mathcal{L}$ 

23. 
$$m \angle MQO = \frac{Q0^{\circ}}{}$$

24. If 
$$OP = 2x$$
, find x.



$$x = 13-4$$

## Point T is the incenter of $\triangle PQR$ .

25. If Point T is the *incenter*, then Point T is the point of concurrency of

the angle bisectors.

- 26. ST = 15
- 27. If TU = (2x 1), find x. [TV = 15] 2x 1 = 15 2x = 16 x = 8



- 28. If  $m \angle PRT = 24^{\circ}$ , then  $m \angle QRT = 24^{\circ}$
- 29. If  $m \angle RPQ = 62^{\circ}$ , then  $m \angle RPT = 31^{\circ}$

# Point G is the <u>centroid</u> of $\triangle$ ABC, AD = 8, AG = 10, BE = 10, AC = 16 and CD = 18. Find the length of each segment.

30. If Point G is the *centroid*, then Point T is the point of concurrency of

the <u>Midians</u>



32. 
$$EA = 15$$

34. BA = 
$$10^{\circ}$$

35. 
$$GE = 5$$

37. BC = 
$$20$$

38. 
$$AF = 0$$



Point S is the <u>centroid</u> of  $\triangle RTW$ , RS = 4, VW = 6, and TV = 9. Find the length of

each segment.



42. 
$$RW = 12$$



Point G is the centroid of  $\triangle$  ABC. Use the given information to find the value of the variable. can do either

45. FG = x + 8 and GA = 6x - 42

or 2FG=GA



way

$$2x + 16 = 6x - 4^{4}$$

$$x = 5$$

46. If CG = 3y + 7 and CE = 6y

$$3y + 7 = \frac{2}{3}(6y)$$

## Calculating points of Concurrency: What's the point?

### Circumcenter

1. Plot the points A(-4, -2), B(0, 2), C(4, -4). Draw  $\triangle ABC$ .

a. Calculate the midpoint of  $\overline{AB}$ .

$$\frac{-4+0}{2}$$
,  $\frac{-2+2}{2}$  =  $(-2,0)$ 

b. Find the slope of  $\overline{AB}$ 

$$-\frac{2-2}{-4+0} = -\frac{4}{-4} = 1$$

c. What is the slope of the perpendicular bisector of  $\overline{AB}$ 

d. Write and graph the equation of the line containing perpendicular bisector

of 
$$\overline{AB}$$
.  
 $(-2, 0)$ 

$$0 = 2 + b$$



e. Follow the same steps to write and graph the equation of the line containing perpendicular bisector of  $\overline{AC}$ .

$$(0, -3)$$

$$(0,-3)$$

$$(0, -3)$$
 -3 = 4(0)+b

$$y = 4x - 3$$

Calculate the circumcenter (point D) of  $\triangle ABC$ . Plot and label the point on the graph. Check by constructing a circumscribed circle.

$$y = -x - 2$$

$$-x-2=4x-3$$
  $y=-\frac{1}{5}-2$ 

$$1 = 5x$$

$$\frac{1}{5} = \times$$

$$y = -\frac{1}{5} - 2$$

- 2. Plot the points A(-2,2), B(4,4), C(2,-2). Draw triangle  $\triangle ABC$ .
  - a. Find the slope of  $\overline{AB}$ .

$$\frac{2-4}{-2-4} = \frac{-2}{-6} = \frac{1}{3}$$

b. What is the slope of altitude  $\overline{CD}$ ?

c. Write and graph the equation of the line containing altitude  $\overline{CD}$ .



d. Follow the same steps to write and graph the equation of the line containing altitude  $\overline{BE}$ .



SLOPE AC

SLOSE AC B (4,4)  

$$\frac{2++2}{2-2} = \frac{4}{4} = -1$$

$$-2 - 2 - 4$$

$$4 = 1(4) + b$$
  $y = X$ 

e. Calculate the orthocenter (point G) of  $\triangle ABC$ . Plot and label the point on the graph.

$$y = -3x + 4$$

$$-3x + 4 = x$$

$$4 = 4x$$

Find the equation of the line containing altitude  $\overline{AF}$ . Your orthocenter should be on that line as well. Substitute your point into this equation to check that it works.

$$\frac{4++2}{4-2}=\frac{6}{2}=3$$

$$y = -\frac{1}{3} \times + \frac{4}{3}$$

$$1 = -\frac{1}{3}(1) + \frac{4}{3}$$

#### Centroid

- 3. Plot the points A(0,-6), B(-10,-6), C(1,0). Draw  $\triangle ABC$ .
  - a. Find the midpoint of  $\overline{AB}$  and label that point D.

(-5,6)



b. Write and graph the equation of the line containing median  $\overline{CD}$ .

Slope CO 
$$((1,0))$$
 m=1  
 $-6-0=-6=1$  0=1(1)+b  
 $-5-1$   $-6$  0=1+b  $|U=X-1|$ 

c. Follow the same steps to write and graph the equation of the line containing the median  $\overline{AE}$ .

$$\begin{array}{c}
\text{mid BC} \\
-10+1 \\
2
\end{array}$$

$$\begin{array}{c}
-6+0 \\
2
\end{array}$$

$$\begin{array}{c}
(-4.5, -3)
\end{array}$$

median AE.  
Slope AE 
$$A(0,-6)$$
  $M = -\frac{2}{3}$   
 $-6 + +3 = -\frac{2}{3}$   $-6 = -\frac{2}{3}(6) + \frac{1}{3}$   $y = -\frac{2}{3}x - 6$ 

d. Calculate the centroid (point F) of  $\triangle ABC$ . Plot and label the point on the graph. Find the average of your x's and the average of your y's. Do your calculations match?

Centroid = 
$$(-3, -4)$$
 Aver.  $\times 0 + -10 + 1 = -3$   
Aver.  $y - 6 + -6 + 0 = -4$ 

e. Two vertices of a triangle are (0,0) and (9,0). The centroid is (6,1). Find the third vertex of the triangle.

Average x 
$$0+9+x=6$$
  $9+x=18$   $x=9$   $(9,3)$ 

Average y = 0 + 0 + y = 1 y = 3

f. Connect the midpoints of each side of the triangle to form a smaller triangle within the original triangle. Find the coordinates of the centroid of the smaller triangle. What happened and why?



