```
Lesson 12-2: Exponential Functions
    -follow a +/- pattern in their second differences
An exponential function has the form f(x)=a\mp@subsup{b}{}{*}\mathrm{ where a }\ddagger0,b\not=1\mathrm{ , and}
b>
[Ex.1: Evaluating an Exponential Function]
    (a) The function f(x)=2(3)}\mathrm{ (models on insect population after x days.
        f(x)=2(3)
        f(x)=486
(b) The function f(x)=1500(0.995)}\mp@subsup{)}{}{x}\mathrm{ , where x is the time in years,
    models a prarie dog population. How many prarie dogs will there
    be in 8 years? }f(x)=1500(.995)
            f(x)\approx1441
[Ex 2: Transforming Exponential Functions]
            Original:}f(x)=a\mp@subsup{b}{}{x
\[
f(x)=2^{x}
\]
Vertical Translation (shift)
\(\square\)
f(x)}=\mp@subsup{2}{}{x}+3<\mathrm{ shift up 3
f(x)=2 2x-3}\leqslant\mathrm{ shift down 3
(2) Horizontal Translation (shift)
            a b x+c}<<\mathrm{ shift left
            a b }\mp@subsup{}{}{x-c}<<\mathrm{ shift right
    f(x)= 2 < < < shift left 3
        f(x)= 2 x-3}\pi\mathrm{ shift right 3
(3) Reflections
            - ab}\mp@subsup{}{}{x}->\mathrm{ reflects across
                ab}\mp@subsup{b}{}{-x}=\mathrm{ reflects across y
        f(x)}=-3\cdot\mp@subsup{2}{}{x}->\mathrm{ ref. across }
        f ( x ) = 3 \cdot 2 ^ { - x } \rightarrow \text { ref. across y}
(4) Vertical Stretch & Shrink
```



```
            f(x) = 3.2x}->\mathrm{ stretch of 3
            f(x)=1/3\cdot2}\mp@subsup{2}{}{x}->\mathrm{ shrink of 1/3
    [Practice] shift left
        N(1)
        (2)
            2) 1/4}(\mp@subsup{4}{}{-x})+
            Shrink by cil4
```

EXAMPLES: Sketch the graph of each function. Describe the transformation from the parent function $y=a b^{x}$

1) $y=3^{x}$

No transformation

